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The solution of the axisymmetric problem for transversely isotropic bodies, ex- 
pressed in terms of generalized analytic functions, is constructed. We obtain for- 
mulas for the displacements and stresses, similar to the corresponding formulas 
of the plane problem. The representation of the generalized analytic functions 

by analytic ones, are indicated, and the analogue of the Cauchy-type integral 

which gives the possibility of reducing the boundary value problems to integral 
equations, is presented. As an example, we consider the action of forces which 
are distributed along a circumference in the interior of a transversely isotropic 

space. 
The plane problems of the theory of elasticity for transversely isotropic bodies 

are solved effectively with the aid of analytic functions of a complex variable 
[l]. In [Z, 31 the solution of axisymmetric and nonaxisymmetric problems for 
bodies of revolution with the aid of analytic functions and contour integrals,was 

considered. In the case of an isotropic elastic medium, the solution of axisym- 
metric problems with the aid of a class of generalized analytic functions [4] 
was proposed. 

1. Let lik (z, r) and I’k (z, r) be complex functions satisfying the system of equations 

where the parameter yk is some number, in general, complex. These functions, obviously, 
satisfy the differential equations 
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we introduce the COmpkX variables &= zk + ir and tk* = zk - ir (Sk = 2 i Yk) 

and the functions 
@, (th., fk*) z= u, (z, F) j- iv, (z, r) (1.3) 

(Dii* (l,;, fh.*) =:= U,; (3, r) - iVk (z. r) 

Then, the system (1.1) can be written in the form 
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On the above introduced functions we impose parity conditions, considering Uh. an even 

function with respect to p and I’,,. an odd function. Then 

cil, (Z, F) = c’k (Z,-r)7 Vk (c. r) = -1-k (z, -r) (1.5) 

@)h- (th, tk*) -=- ak* (t,i*, th_) 

In the sequel it will be necessary to consider two cases for the value of the parameter 

yk (k = 1. 2): case (a), when y1 and YZ are complex conjugate numbers (y/i :- Tjj; k + 

j = 3) and case (b), when 1’1 and y2 are real distinct numbers (yk = Tk7 yk + yj). 

In the case (a) lk* = %j and it is possible, without violating the previous equalities, 
to introduce the relations 

u,= Oj, 
i', .= vj, 

@,* (ti;, 
tk'+) = '3 (tj, fj*) 

(1.6) 

In the case (b) th-* = tk, and we dan consider that the functions I’^_ and Irk are real. 
Then 

Uh. z lib.’ ,’ ._ c’ h’- h” QD,* (L,<. l,;*) -= 0, (lk, $.*) (1.7) 

Substituting (1.6) and (1.7) into (1.4) we can see that in the case (b) 0, (tiiq &) is a 
generalized analytic function in the sense of Vekua [5]. In the case (a) they belong to 
a somewhat larger class, nevertheless, the basic properties of generalized analytic func- 

tions hold for them also. 

2. We consider the axisymmetric problem of the theory of elasticity for a transver- 
sely isotropic medium. The differential equations of the equilib~um in the cylindrical 
coordinates z, r (z is the symmet~ axis) have the form 

Here ZL’ and II are the axial and the radial displacements, A,,, A,,, Asa, Ad4 are the 
moduli of elasticity [l]. 

We denote 
d i; --= (A 3s - 21 ,*>s,;2) / (d. ,,d A (2.2) 

Bh. = (A,,y$ --‘Ad i (A,,Ad 

Lt := (A,, -I- Aa,*) i: (*‘i,,‘lJ‘d, (f)‘yi$ --= it $k) 

Here by *;s (li :-= 1; 2) we understand the roots of the characteristic equation (given bet- 
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ween parentheses in (2. a)), satisfying the condition Re yk > 0. These roots are the in- 
verses of the parameter .P&: introduced in [l] for the case of the axisymmetric deforma- 

tion and can be either complex conjugates or real ; the case of equal roots will not be 
considered here. 

We introduce the functions I;’ and f by the relations 

n f 
==11.1, 

Then Eqs. (2.1) can be written in the form 

Let us associate (2.4) with (1.1). Taking into account the equality A,, i A,, -.= y&j” 
jk i- i ::- X), we can see that the functions A,rF and zf, where G = D / (Bkyj), satisfy 

the system (1.1) with the parameter yj; their combination of type (1.3) forms a gene- 
ralized analytic function. 

We will consider the equalities (2.3) as a system of differential equations relative to 
ZP and U. The general solution of this system has the form 

Here the first terms represent the general solution of the system (2.3) with right-hand 
sides equal to zero ; the functions CTk and l’k satisfy Eqs. (1.1) with the parameter ‘VI;. 
The second terms represent particular solutions of the complete system (2.3). We will 
assume that L;j and l.‘j are related to the right-hand sides of this system by the equal- 

ities ari. 
-.Lz 

:I,, F dIVj It: 

Fj d: Tj? - Tk.l ’ I’, x = Tj” - T? 

and satisfy Eqs. (1.1) with the parameter yj (which is possible by virtue of (2.4)). The 
factors Pk and pj are arbitrary, except that they are either complex conjugate or real 

numbers. Their values will be taken from considerations of convenience in the writing 

of the stress formulas. 
Now we turn to the generalized analytic functions with the aid of (1.3). Taking into 

account (1.6) (1.7), we can see that for the cases (a) and (b) the formulas (2.5) can be 
written in the form 

1~1 = Re (p,@, + J+I’?)’ II = He (ig, @L i- ig,%) (2.6) 

If z, r are considered as rectangular coordinates in the meridian plane of the body, 
then t(’ is an even function with respect to r, while u is an odd function. This is in 
agreement with the conditions (1.5). 

3. For the determination of stresses it is convenient to switch to the technical elastic 
constants. The characteristic equation and the coefficients of the formulas (2.Q (2.6) 

will have the form 
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Making use of the known relations which connect the displacements and the stresses 
of a transversely isotropic elastic body, we find the expressions for the stresses in terms 
of the generalized analytic functions 

(3.1) 

The formulas (2.6) and (3.1) are similar to the corresponding formulas which express 
the components of the plane strain in terms of analytic functions Cl]. 

For specified stresses, the functions cDh. are determined except for an expression ah’ + 
ibk ! r (generalized constant), where 

_ 
qlh, -1 q2b2 0 (al -= ci,, b, ~-- 6, or lru “1; : Im bli -: u) 

If the displacements are specified, then one has to put in addition pla, t- pzaz - 0. 

4. The Eqs. (1.1) and the equalities (1.5) are satisfied if the functions Uk and vk 
are represented in the form of the integrals 

(4.1) 

Here v/i (tk) is an analytic function of the complex variable <k = zk + iy (28 = z / yh.). 
From here we obtain the representation of the generalized analytic functions in terms of 

the analytic ones 

2 ‘D, (fk? tk*) = - 1 fh- - t,,* ) (4.2) 

d 
(1) 

k 
’ zxz - 

2 
dz @I,, = - 1 t,; - th-* 1 

(4.3) 
ii 

The conditions (1.6) and (1.7) are satisfied if we set, respectively, 

V/c CC,) E ‘Fj (Ej) 1 ‘Fh; (5J = T^- ($J (4.4) 

The expressions (4.1) - (4.3) represent the natural generalizations ofthe results obtained 
in [4]. They are suitable when the plane domain, occupaied by the meridian plane of 
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the body, intersects the 2 -axis. In this case, for the points of the z-axis the equalities 

(4. l), (4.2) become 
(4.5) 

We note that in the formulas (4.1) - (4.3) we can pass to integration along the con- 
tour of the domain (introducing the factor I/?) and substitute the boundaryvalut’r ofthe 

analytic function by an arbitrary function defined on the contour (by the density of the 

integral) [4]. All these representations can be used in order to express with the aid of 
(3.1) and (2.6) the stress and displacement components in terms of analytic functions 

or contour integrals. Similar expressions (for the case (b)) have been obtained by a dif- 
ferent method in [2] (see also [3]). 

6. For the generalized analytic functions we have the analogue of the Cauchy type 

integral , ,a 

(5.2) 

Here 11. (tic, rk) is the generalized Cauchy kernel, Ii and E are the complete elliptic 

integrals, Fk (tk) is the density of the integral satisfying the conditions (4.4) I, is the 
contour of the planedomain occupied by the meridian section of the body, ah. is the 

affix of a contour point. These formulas can be easily obtained by the method applied 

in C43. 
The representation (5.1) can be used for the reduction of the boundary problems to 

integral equations, corresponding to Sherman’s equations for the corresponding plane 

problem [6]. 

6. As an example we consider the action of forces, distributed along the circumfer- 
ence (r -= I’,,, 3 -= zU) inside a transversely isotropic space and directed along the z -axis. 

By arguments similar to those given in p], the following representation for the gene- 

ralized analytic functions was obtained : 

II ’ z (1. - 7.1)) / (1. ~1 ru) , !I’> : I - ,I,‘?, JOii : Tii i 7,; 

Here K = I\I (uk), n = 17 (-7~‘~. l’h.1 are the complete elliptic integrals of the first 
and the third kind, respectively, 21 is a piecewise-constant function described in p] and 

p is the intensity of the distributed forces. 
The corresponding formulas for the displacements and stresses follow from (2.6) and 

(3.1). 
If we set 2nr,,P = P, = const and let I’,, tend to zero, then from (6.1) for z,, 0 we 

obtain 
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The last formulas coincide essentially with the known solution of the action of a con- 

centrated force P,, inside a transversely isotropic space (see, for example, [8] ). 
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