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The solution of the axisymmetric problem for transversely isotropic bodies, ex-
pressed in terms of generalized analytic functions, is constructed, We obtain for-
mulas for the displacements and stresses, similar to the corresponding formulas
of the plane problem, The representation of the generalized analytic functions
by analytic ones, are indicated, and the analogue of the Cauchy-type integral
which gives the possibility of reducing the boundary value problems to integral
equations, is presented, As an example, we consider the action of forces which
are distributed along a circumference in the interior of a transversely isotropic
space,

The plane problems of the theory of elasticity for transversely isotropic bodies
are solved effectively with the aid of analytic functions of a complex variable
[1]. In[2, 3] the solution of axisymmetric and nonaxisymmetric problems for
bodies of revolution with the aid of analytic functions and contour integrals,was
considered, In the case of an isotropic elastic medium, the solution of axisym-
metric problems with the aid of a class of generalized analytic functions [4]
was proposed ,

1, Let Ug(z,7) and Vi (3 r) be complex functions satisfying the system of equations
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where the parameter vy is some number, in general, complex, These functions, obviously,
satisfy the differential equations / (N
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We introduce the complex variables y=z; + ir and &* = 2 — ir (3p = 2/ Vi)
and the functions

DO (b 1)) = U, (2, ) iV, (z, ) (1.3)
D* (0¥ = ,;(3,")—in(z.r)

Then, the system (1,1) can be written in the form
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On the above introduced functions we impose parity conditions, considering U, an even
function with respect to r and 1’ an odd function, Then

Uk (z, 1) = Up(z,~r), Vil(z.r) = —Vi (s, —n) (1.5)
@ (£, te*) = Dy* (1%, t)

In the sequel it will be necessary to consider two cases for the value of the parameter
vi (B =1, 2): case(a), when y, and ¥ are complex conjugate numbers (y; = ¥;; k& +
j= 3) and case (b), when y; and v, are real distinct numbers (y; = ¥, Y& == ¥i)-

In the case (a) t,* = I; and it is possible, without violating the previous equalities,
to introduce the relations

Ue=0;, V.=V @O, "% =0, 5% (1,6)
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In the case (b) ¢,* = t;, and we can consider that the functions 'y and Vy are real,
Then - . - ] ____._
U,=0,, Vo=V O 15 =D (1, t* 1.mn
Substituting (1,6) and (1, 7) into (1,4) we can see that in the case (b) @y, (¢, &) isa
generalized analytic function in the sense of Vekua [5]. In the case (a) they belong to
a somewhat larger class, nevertheless, the basic properties of generalized analytic func-
tions hold for them also,

2. We consider the axisymmetric problem of the theory of elasticity for a transver-
sely isotropic medium, The differential equations of the equilibrium in the cylindrical
coordinates z, » (z is the symmetry axis) have the form
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Here w» and u are the axial and the radial displacements, Ay, A3, A3y, Agg are the
moduli of elasticity [1],

We denote .
A= {dgg — Ay / (Apda) (2.2)

By = (Anvi® — Au) i {dpda)
D o== (A -+ Ag) [ (A, (D —= AypBy)

Here by v, (k == 1;2) we understand the roots of the characteristic equation (given bet-
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ween parentheses in (2,2)), satisfying the condition Rey, > 0. These roots are the in-
verses of the parameter sy, introduced in [1] for the case of the axisymmetric deforma-
tion and can be either complex conjugates or real; the case of equal roots will not be
considered here,

We introduce the functions # and f by the relations

dw | A A e i
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Then Egs, (2,1) can be written in the form
aF J 1 oF o
N [T SR (2.4)

Let us associate (2,4) with (1,1), Taking into account the equality Az / Ay = v4%p)°
{(k =- 7= 3), we can see that the functions A, F and «f, where o = D/ (Byy;), satisfy
the system (1, 1) with the parameter y;; their combination of type (1, 3) forms a gene-
ralized analytic function,

We will consider the equalities (2, 3) as a system of differential equations relative to
w and u. The general solution of this system has the form

w = plUy + p3lj, w = =gV — g5} (2.5)
(75 = P¥vkD [ By

Here the first terms represent the general solution of the system (2, 3) with right-hand
sides equal to zero; the functions U/ and Ty satisfy Egs, (1, 1) with the parameter Vi
The second terms represent particular solutions of the complete system (2, 3), We will
assume that ¢/; and '; are related to the right-hand sides of this system by the equal-
ities al; AnF av; 1f

P = Tj2—7k2 ' P75, T T2 — 12

and satisfy Eqs, (1,1) with the parameter y; (which is possible by virtue of (2,4)). The
factors py and pjare arbitrary, except that they are either complex conjugate or real
numbers, Their values will be taken from considerations of convenience in the writing
of the stress formulas,

Now we turn to the generalized analytic functions with the aid of (1, 3). Taking into
account (1, 6), (1, 7), we can see that for the cases (a) and (b) the formulas (2, 5) can be
written in the form

w = Re (p;®; + p@s). u = Re (igy @y + ig2Dy) (2.8)

If z,r are considered as rectangular coordinates in the meridian plane of the body,
then » is an even function with respect to r, while » is an odd function, This is in
agreement with the conditions (1, 5),

3, For the determination of stresses it is convenient to switch to the technical elastic
constants, The characteristic equation and the coefficients of the formulas (2, 5), (2.56)
will have the form E
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Making use of the known relations which connect the displacements and the stresses
of a transversely isotropic elastic body , we find the expressions for the stresses in terms
of the generalized analytic functions

J
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The formulas (2,6) and (3,1) are similar to the corresponding formulas which express
the components of the plane strain in terms of analytic functions [1],

For specified stresses, the functions @, are determined except for an expression a; +
iby / r (generalized constant), where

@107 geby = 0 (ay = @ by == by or lm ai= Im by = )
If the displacements are specified, then one has to put in addition p,a; 4- pya, — 0.

4, The Egs, (1.1) and the equalities (1, 5) are satisfied if the functions Uy and Vi
are represented in the form of the integrals

r M cPk (?;h) d;r‘; (4 1)
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Here ¢ (L;) is an analytic function of the complex variable {y = zj -+ iy (ox = 2/ 7p).
From here we obtain the representation of the generalized analytic functions in terms of

the analytic ones Iy —
Dyt 1 = — T § ) l/ R (4.2)
ke Tk 'fk‘t/;*l,, Kk \ok L, —1f ok
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te p S—
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The conditions (1,6) and (1, 7) are satisfied if we set, respectively,
Fp (;n) = (P)' (C_,)s P (gh) =@, (Zh) (4.4)

The expressions (4,1) —(4, 3) represent the natural generalizations ofthe resuits obtained
in [4], They are suitable when the plane domain, occupaied by the meridian plane of
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the body, intersects the :z-axis, In this case, for the points of the z-axis the equalities
(4.1),(4.2) become
D (2, 2i) - Ug (3, 0) = @ (25), Ve (z, 0 =0 (4.5)

We note that in the formulas (4,1) — (4, 3) we can pass to integration along the con-
tour of the domain (introducing the factor !/,) and substitute the boundaryvalucs ofthe
analytic function by an arbitrary function defined on the contour (by the density of the
integral) [4], All these representations can be used in order to express with the aid of
(3.1) and (2, 6) the stress and displacement components in terms of analytic functions
or contour integrals, Similar expressions (for the case (b)) have been obtained by a dif-
ferent method in [2] (see also [3]).

5, For the generalized analytic functions we have the analogue of the Cauchy type
integral

1 ' R
mh‘ (,k’ II.'*) NRET S ¢ K (rn) W (tl." T/\) dT).‘ (5'1)
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Here 1" (;, T}) is the generalized Cauchy kernel, K and & are the complete elliptic
integrals, F (1) is the density of the integral satisfying the conditions (4,4), /. is the
contour of the plane domain occupied by the meridian section of the body, t;; is the
affix of a contour point, These formulas can be easily obtained by the method applied
in [4].

The representation (5, 1) can be used for the reduction of the boundary problems to
integral equations, corresponding to Sherman's equations for the corresponding plane
problem [6].

8., Asanexample we consider the action of forces, distributed along the circumfer-~
ence (r = r,, 5 "= z,) inside a transversely isotropic space and directed along the = -axis,
By arguments similar to those given in [7], the following representation for the gene-

ralized analytic functions was obtained :

S i kT R, ey 6.1
D, = ProN, l-f’h— K b= I 2o, ('TL - )5 (6.1)
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Here K = K (ug), I = I (—»® py) are the complete elliptic integrals of the first
and the third kind, respectively, - is a piecewise~constant function described in [7] and
P is the intensity of the distributed forces,

The corresponding formulas for the displacements and stresses follow from (2,6) and
(3.1).

If we set 2mr,P == P, = const and let r, tend to zero, then from (6,1) for z, = 0 we
obtain
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The last formulas coincide essentially with the known solution of the action of a con-

centrated force P, inside a transversely isotropic space (see, for example, [8]).
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